Layered optomagnonic structures: Time Floquet scattering-matrix approach
نویسندگان
چکیده
منابع مشابه
Time Delay Correlations in Chaotic Scattering: Random Matrix Approach
We study the correlations of time delays in a model of chaotic resonance scattering based on the random matrix approach. Analytical formulae which are valid for arbitrary number of open channels and arbitrary coupling strength between resonances and channels are obtained by the supersymmetry method. We demonstrate that the time delay correlation function, though being not a Lorentzian, is chara...
متن کاملBoundary Perturbation Theory for Scattering in Layered Rough Structures
The electromagnetic wave interaction with layered structures constitutes a crucial topic of current interest in theoretical and experimental research. Generally speaking, several modelling and design problems, encountered, for instance, in SAR (Synthetic Aperture Radar) application, GPR (Ground Penetrating Radar) sensing, radar altimeter for planetary exploration, microstrip antennas and MMICs ...
متن کاملFloquet Time Crystals.
We define what it means for time translation symmetry to be spontaneously broken in a quantum system and show with analytical arguments and numerical simulations that this occurs in a large class of many-body-localized driven systems with discrete time-translation symmetry.
متن کاملHybrid transfer-matrix FDTD method for layered periodic structures.
A hybrid transfer-matrix finite-difference time-domain (FDTD) method is proposed for modeling the optical properties of finite-width planar periodic structures. This method can also be applied for calculation of the photonic bands in infinite photonic crystals. We describe the procedure of evaluating the transfer-matrix elements by a special numerical FDTD simulation. The accuracy of the new me...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2019
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.99.144415